Molecular understanding of conformational dynamics of a fibronectin module on rutile (110) surface

The conformational dynamics of the 10th type-III module of fibronectin (FN-III(10)) adsorbed on the perfect and three reduced rutile TiO(2)(110) surfaces with different types of defects was investigated by molecular dynamics (MD) simulations. Stable protein-surface complexes were presented in the fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 20 vom: 19. Okt., Seite 15972-81
1. Verfasser: Wu, Chunya (VerfasserIn)
Weitere Verfasser: Chen, Mingjun, Xing, Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fibronectins Oligopeptides titanium dioxide 15FIX9V2JP arginyl-glycyl-aspartic acid 78VO7F77PN Titanium D1JT611TNE
Beschreibung
Zusammenfassung:The conformational dynamics of the 10th type-III module of fibronectin (FN-III(10)) adsorbed on the perfect and three reduced rutile TiO(2)(110) surfaces with different types of defects was investigated by molecular dynamics (MD) simulations. Stable protein-surface complexes were presented in the four simulated models and were derived from the contributions of direct and indirect interactions of various functional groups in FN-III(10) with the metal oxide layers. A detailed analysis to characterize the overall structural stability of the adsorbed FN-III(10) molecule suggests that the bonding strength and the loss of protein secondary structure vary widely, depending on the topology of the substrate surface. The additional adsorption sites exhibiting higher activity, provided by the reduced surfaces, are responsible for the stronger FN-III(10)-TiO(2) interactions, but too high an interaction energy will cause a severe conformational deformation and therefore a significant loss of bioactivity of the adsorbed protein
Beschreibung:Date Completed 21.01.2011
Date Revised 25.11.2016
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la103010c