Selective and direct immobilization of cysteinyl biomolecules by electrochemical cleavage of azo linkage
Controlled orientation and reserved activity of biomolecules, when site-selectively immobilized in a highly integrated manner on a minimal time scale, are crucial in designing biosensors for the multiplex detection. Here, we describe a novel method for the orientation-controlled immobilization of bi...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1991. - 26(2010), 19 vom: 05. Okt., Seite 15087-91 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Azo Compounds Peptides Cysteine K848JZ4886 |
Zusammenfassung: | Controlled orientation and reserved activity of biomolecules, when site-selectively immobilized in a highly integrated manner on a minimal time scale, are crucial in designing biosensors for the multiplex detection. Here, we describe a novel method for the orientation-controlled immobilization of biomolecules based on site-selective electrochemical activation of p-hydroxyazobenzene self-assembled monolayer (SAM) followed by one-step coupling of cysteinyl biomolecules. The p-aminophenol, a product of reductive cleavage of p-hydroxyazobenzene, was subsequently oxidized to yield p-quinoneimine which then conjugated with cysteinyl biomolecules through 1,4-Michael addition, thus obviating additional linker agents and the related time consumption. Using this method, we selectively activated the electrode surface and immobilized laminin peptide IKVAV, a neurite promoting motif. When we cultured hippocampal neurons on the electrode, the extended neurites were found only within the electrochemically activated area. Hence, the proposed method represents a new promising platform for the patterning of functional peptides, active proteins, and live cells |
---|---|
Beschreibung: | Date Completed 03.01.2011 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la102489k |