Three-dimensional structure and growth of myelins

After contact with water, surfactant lamellar phases (L(α)) can show spectacular interface instabilities: multibilayer tubules, so-called myelins, grow from the L(α)/water interface into the water. We have studied the shape, size, and growth of myelins in aqueous solutions of the nonionic surfactant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 19 vom: 05. Okt., Seite 15192-9
1. Verfasser: Reissig, Louisa (VerfasserIn)
Weitere Verfasser: Fairhurst, David J, Leng, Jacques, Cates, Michael E, Mount, Andrew R, Egelhaaf, Stefan U
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:After contact with water, surfactant lamellar phases (L(α)) can show spectacular interface instabilities: multibilayer tubules, so-called myelins, grow from the L(α)/water interface into the water. We have studied the shape, size, and growth of myelins in aqueous solutions of the nonionic surfactant C(12)E(3) (triethylene glycol monododecyl ether) during dissolution. We used a combination of different imaging techniques: optical microscopy providing 2-D projections of the sample and confocal microscopy offering a complete 3-D reconstruction. These techniques provide quantitative information on the shape and growth of myelins, such as their width, length, and depth profile as a function of time. The growth rate of myelins, characterized by a swelling or diffusion coefficient, was found to increase with surfactant mass fraction and, seemingly, with sample thickness. We demonstrate that myelin creaming due to buoyancy can explain the apparent dependence on sample thickness. Our experiments furthermore suggest that myelin growth is controlled by an interplay between the water mobility in the lamellar phase and the osmotic pressure difference between the lamellar phase and the contacting water
Beschreibung:Date Completed 03.01.2011
Date Revised 29.09.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la102726r