Space-time super-resolution using graph-cut optimization

We address the problem of super-resolution—obtaining high-resolution images and videos from multiple low-resolution inputs. The increased resolution can be in spatial or temporal dimensions, or even in both. We present a unified framework which uses a generative model of the imaging process and can...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 5 vom: 15. Mai, Seite 995-1008
1. Verfasser: Mudenagudi, Uma (VerfasserIn)
Weitere Verfasser: Banerjee, Subhashis, Kalra, Prem Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM200531433
003 DE-627
005 20250211220203.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2010.167  |2 doi 
028 5 2 |a pubmed25n0668.xml 
035 |a (DE-627)NLM200531433 
035 |a (NLM)20733227 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mudenagudi, Uma  |e verfasserin  |4 aut 
245 1 0 |a Space-time super-resolution using graph-cut optimization 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.08.2011 
500 |a Date Revised 01.07.2011 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We address the problem of super-resolution—obtaining high-resolution images and videos from multiple low-resolution inputs. The increased resolution can be in spatial or temporal dimensions, or even in both. We present a unified framework which uses a generative model of the imaging process and can address spatial super-resolution, space-time super-resolution, image deconvolution, single-image expansion, removal of noise, and image restoration. We model a high-resolution image or video as a Markov random field and use maximum a posteriori estimate as the final solution using graph-cut optimization technique. We derive insights into what super-resolution magnification factors are possible and the conditions necessary for super-resolution. We demonstrate spatial super-resolution reconstruction results with magnifications higher than predicted limits of magnification. We also formulate a scheme for selective super-resolution reconstruction of videos to obtain simultaneous increase of resolutions in both spatial and temporal directions. We show that it is possible to achieve space-time magnification factors beyond what has been suggested in the literature by selectively applying super-resolution constraints. We present results on both synthetic and real input sequences 
650 4 |a Journal Article 
700 1 |a Banerjee, Subhashis  |e verfasserin  |4 aut 
700 1 |a Kalra, Prem Kumar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 33(2011), 5 vom: 15. Mai, Seite 995-1008  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:33  |g year:2011  |g number:5  |g day:15  |g month:05  |g pages:995-1008 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2010.167  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2011  |e 5  |b 15  |c 05  |h 995-1008