Space-time super-resolution using graph-cut optimization

We address the problem of super-resolution—obtaining high-resolution images and videos from multiple low-resolution inputs. The increased resolution can be in spatial or temporal dimensions, or even in both. We present a unified framework which uses a generative model of the imaging process and can...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 33(2011), 5 vom: 15. Mai, Seite 995-1008
1. Verfasser: Mudenagudi, Uma (VerfasserIn)
Weitere Verfasser: Banerjee, Subhashis, Kalra, Prem Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We address the problem of super-resolution—obtaining high-resolution images and videos from multiple low-resolution inputs. The increased resolution can be in spatial or temporal dimensions, or even in both. We present a unified framework which uses a generative model of the imaging process and can address spatial super-resolution, space-time super-resolution, image deconvolution, single-image expansion, removal of noise, and image restoration. We model a high-resolution image or video as a Markov random field and use maximum a posteriori estimate as the final solution using graph-cut optimization technique. We derive insights into what super-resolution magnification factors are possible and the conditions necessary for super-resolution. We demonstrate spatial super-resolution reconstruction results with magnifications higher than predicted limits of magnification. We also formulate a scheme for selective super-resolution reconstruction of videos to obtain simultaneous increase of resolutions in both spatial and temporal directions. We show that it is possible to achieve space-time magnification factors beyond what has been suggested in the literature by selectively applying super-resolution constraints. We present results on both synthetic and real input sequences
Beschreibung:Date Completed 18.08.2011
Date Revised 01.07.2011
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2010.167