Permeabilization of lipid membranes and cells by a light-responsive copolymer

Membrane permeabilization is achieved via numerous techniques involving the use of molecular agents such as peptides used in antimicrobial therapy. Although high efficiency is reached, the permeabilization mechanism remains global with a noticeable lack of control. To achieve localized control and m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 17 vom: 07. Sept., Seite 14135-41
1. Verfasser: Sebai, Sarra C (VerfasserIn)
Weitere Verfasser: Cribier, Sophie, Karimi, Ali, Massotte, Dominique, Tribet, Christophe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Azo Compounds Membrane Lipids carbopol 940 4Q93RCW27E azobenzene F0U1H6UG5C
Beschreibung
Zusammenfassung:Membrane permeabilization is achieved via numerous techniques involving the use of molecular agents such as peptides used in antimicrobial therapy. Although high efficiency is reached, the permeabilization mechanism remains global with a noticeable lack of control. To achieve localized control and more gradual increase in membrane perturbation, we have developed hydrophobically modified poly(acrylic acid) amphiphilic copolymers with light-responsive azobenzene hydrophobic moieties. We present evidence for light triggered membrane permeabilization in the presence azobenzene-modified polymers (AMPs). Exposure to UV or blue light reversibly switches the polarity of the azobenzene (cis-trans isomerization) in AMPs, hence controlling AMP-loaded lipid vesicles permeabilization via in situ activation. Release of encapsulated probes was studied by microscopy on isolated AMP-loaded giant unilamellar vesicles (pol-GUVs). We show that in pH and ionic strength conditions that are biologically relevant pol-GUVs are kept impermeable when they contain predominantly cis-AMPs but become leaky with no membrane breakage upon exposure to blue light due to AMPs switch to a trans-apolar state. In addition, we show that AMPs induce destabilization of plasma membranes when added to mammal cells in their trans-apolar state, with no loss of cell viability. These features make AMPs promising tools for remote control of cell membrane permeabilization in mild conditions
Beschreibung:Date Completed 27.12.2010
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la102456z