|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM200145312 |
003 |
DE-627 |
005 |
20231223220007.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jplph.2010.05.022
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0667.xml
|
035 |
|
|
|a (DE-627)NLM200145312
|
035 |
|
|
|a (NLM)20691498
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rubio, Francisco
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Systems involved in K+ uptake from diluted solutions in pepper plants as revealed by the use of specific inhibitors
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.02.2011
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2010 Elsevier GmbH. All rights reserved.
|
520 |
|
|
|a Here, the contribution of the HAK1 transporter, the AKT1 channel and a putative AtCHX13 homolog to K(+) uptake in the high-affinity range of concentrations in pepper plants was examined. The limited development of molecular tools in pepper plants precluded a reverse genetics study in this species. By contrast, in the model plant Arabidopsis thaliana, these type of studies have shown that NH(4)(+) and Ba(2+) may be used as specific inhibitors of the two K(+) uptake systems to dissect their contribution in species in which, as in pepper, specific mutant lines are not available. By using these inhibitors together with Na(+) and Cs(+), the relative contributions of CaHAK1, CaAKT1 and a putative AtCHX13 homolog to K(+) acquisition from diluted solutions under different regimens of K(+) supply were studied. The results showed that, in plants completely starved of K(+), the gene encoding CaHAK1 was highly expressed and this system is a major contributor to K(+) uptake. However, K(+) concentrations as low as 50μM reduced CaHAK1 expression and the CaAKT1 channel came into play, participating together with CaHAK1 in K(+) absorption. The contribution of a putative AtCHX13 homolog seemed to be low under this low K(+) supply, but it cannot be ruled out that at higher K(+) concentrations this system participates in K(+) uptake. Studies of this type allow extension of the tools developed in model plants to understand nutrition in important crops
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Cation Transport Proteins
|2 NLM
|
650 |
|
7 |
|a HAK1 protein, plant
|2 NLM
|
650 |
|
7 |
|a Membrane Transport Modulators
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a RNA, Messenger
|2 NLM
|
650 |
|
7 |
|a Solutions
|2 NLM
|
650 |
|
7 |
|a Potassium
|2 NLM
|
650 |
|
7 |
|a RWP5GA015D
|2 NLM
|
700 |
1 |
|
|a Arévalo, Laura
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Caballero, Fernando
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Botella, María Angeles
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rubio, José Salvador
|e verfasserin
|4 aut
|
700 |
1 |
|
|a García-Sánchez, Francisco
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Martínez, Vicente
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of plant physiology
|d 1979
|g 167(2010), 17 vom: 15. Nov., Seite 1494-9
|w (DE-627)NLM098174622
|x 1618-1328
|7 nnns
|
773 |
1 |
8 |
|g volume:167
|g year:2010
|g number:17
|g day:15
|g month:11
|g pages:1494-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jplph.2010.05.022
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 167
|j 2010
|e 17
|b 15
|c 11
|h 1494-9
|