Systems involved in K+ uptake from diluted solutions in pepper plants as revealed by the use of specific inhibitors
Copyright © 2010 Elsevier GmbH. All rights reserved.
Veröffentlicht in: | Journal of plant physiology. - 1979. - 167(2010), 17 vom: 15. Nov., Seite 1494-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | Journal of plant physiology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Cation Transport Proteins HAK1 protein, plant Membrane Transport Modulators Plant Proteins RNA, Messenger Solutions Potassium RWP5GA015D |
Zusammenfassung: | Copyright © 2010 Elsevier GmbH. All rights reserved. Here, the contribution of the HAK1 transporter, the AKT1 channel and a putative AtCHX13 homolog to K(+) uptake in the high-affinity range of concentrations in pepper plants was examined. The limited development of molecular tools in pepper plants precluded a reverse genetics study in this species. By contrast, in the model plant Arabidopsis thaliana, these type of studies have shown that NH(4)(+) and Ba(2+) may be used as specific inhibitors of the two K(+) uptake systems to dissect their contribution in species in which, as in pepper, specific mutant lines are not available. By using these inhibitors together with Na(+) and Cs(+), the relative contributions of CaHAK1, CaAKT1 and a putative AtCHX13 homolog to K(+) acquisition from diluted solutions under different regimens of K(+) supply were studied. The results showed that, in plants completely starved of K(+), the gene encoding CaHAK1 was highly expressed and this system is a major contributor to K(+) uptake. However, K(+) concentrations as low as 50μM reduced CaHAK1 expression and the CaAKT1 channel came into play, participating together with CaHAK1 in K(+) absorption. The contribution of a putative AtCHX13 homolog seemed to be low under this low K(+) supply, but it cannot be ruled out that at higher K(+) concentrations this system participates in K(+) uptake. Studies of this type allow extension of the tools developed in model plants to understand nutrition in important crops |
---|---|
Beschreibung: | Date Completed 15.02.2011 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1618-1328 |
DOI: | 10.1016/j.jplph.2010.05.022 |