Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays
In this paper, the problem of exponential stability is investigated for a class of stochastic neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Based on a Lyapunov-Krasovskii functional and th...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 41(2011), 2 vom: 15. Apr., Seite 341-53
|
1. Verfasser: |
Zhu, Quanxin
(VerfasserIn) |
Weitere Verfasser: |
Cao, Jinde |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2011
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
|
Schlagworte: | Journal Article
Research Support, Non-U.S. Gov't |