Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays

In this paper, the problem of exponential stability is investigated for a class of stochastic neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Based on a Lyapunov-Krasovskii functional and th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 41(2011), 2 vom: 15. Apr., Seite 341-53
1. Verfasser: Zhu, Quanxin (VerfasserIn)
Weitere Verfasser: Cao, Jinde
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM199814600
003 DE-627
005 20250211192708.0
007 cr uuu---uuuuu
008 231223s2011 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2010.2053354  |2 doi 
028 5 2 |a pubmed25n0666.xml 
035 |a (DE-627)NLM199814600 
035 |a (NLM)20656658 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Quanxin  |e verfasserin  |4 aut 
245 1 0 |a Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2011 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, the problem of exponential stability is investigated for a class of stochastic neural networks with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Based on a Lyapunov-Krasovskii functional and the stochastic analysis theory, a linear matrix inequality (LMI) approach is developed to derive some novel sufficient conditions, which guarantee the exponential stability of the equilibrium point in the mean square. The proposed LMI-based criteria are quite general since many factors, such as noise perturbations, Markovian jump parameters, and mixed time delays, are considered. In particular, the mixed time delays in this paper synchronously consist of constant, time-varying, and distributed delays, which are more general than those discussed in the previous literature. In the latter, either constant and distributed delays or time-varying and distributed delays are only included. Therefore, the results obtained in this paper generalize and improve those given in the previous literature. Two numerical examples are provided to show the effectiveness of the theoretical results and demonstrate that the stability criteria used in the earlier literature fail 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cao, Jinde  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 41(2011), 2 vom: 15. Apr., Seite 341-53  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:41  |g year:2011  |g number:2  |g day:15  |g month:04  |g pages:341-53 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2010.2053354  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2011  |e 2  |b 15  |c 04  |h 341-53