Site-specific immobilization of DNA in glass microchannels via photolithography

For the first time, a microchannel was photochemically patterned with a functional linker. This simple method was developed for the site-specific attachment of DNA via this linker onto silicon oxide surfaces (e.g., fused silica and borosilicate glass), both onto a flat surface and onto the inside of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 24 vom: 15. Dez., Seite 13952-8
1. Verfasser: Vong, Tuha (VerfasserIn)
Weitere Verfasser: ter Maat, Jurjen, van Beek, Teris A, van Lagen, Barend, Giesbers, Marcel, van Hest, Jan C M, Zuilhof, Han
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fluorescent Dyes DNA 9007-49-2
Beschreibung
Zusammenfassung:For the first time, a microchannel was photochemically patterned with a functional linker. This simple method was developed for the site-specific attachment of DNA via this linker onto silicon oxide surfaces (e.g., fused silica and borosilicate glass), both onto a flat surface and onto the inside of a fused silica microchannel. Sharp boundaries in the micrometer range between modified and unmodified zones were demonstrated by the attachment of fluorescently labeled DNA oligomers. Studies of repeated hybridization-dehybridization cycles revealed selective and reversible binding of cDNA strands at the explicit locations. On average, approximately 7 x 10(11) fluorescently labeled DNA molecules were hybridized per square centimeter. The modified surfaces were characterized with X-ray photoelectron spectroscopy, infrared microscopy, static contact angle measurements, confocal laser scanning microscopy, and fluorescence detection (to quantify the attachment of the fluorescently labeled DNA)
Beschreibung:Date Completed 22.09.2010
Date Revised 21.06.2010
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la901558n