Bayesian blind deconvolution from differently exposed image pairs

Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing tw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 11 vom: 02. Nov., Seite 2874-88
1. Verfasser: Babacan, Sevket Derin (VerfasserIn)
Weitere Verfasser: Wang, Jingnan, Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM198643772
003 DE-627
005 20231223213121.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2010.2052263  |2 doi 
028 5 2 |a pubmed24n0662.xml 
035 |a (DE-627)NLM198643772 
035 |a (NLM)20529746 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Babacan, Sevket Derin  |e verfasserin  |4 aut 
245 1 0 |a Bayesian blind deconvolution from differently exposed image pairs 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.09.2014 
500 |a Date Revised 06.09.2013 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing two such images in order to obtain an estimate of the original scene and present a novel blind deconvolution algorithm for solving it. We formulate the problem in a hierarchical Bayesian framework by utilizing prior knowledge on the unknown image and blur, and also on the dependency between the two observed images. By incorporating a fully Bayesian analysis, the developed algorithm estimates all necessary model parameters along with the unknown image and blur, such that no user-intervention is needed. Moreover, we employ a variational Bayesian inference procedure, which allows for the statistical compensation of errors occurring at different stages of the restoration, and also provides uncertainties of the estimates. Experimental results with synthetic and real images demonstrate that the proposed method provides very high quality restoration results and compares favorably to existing methods even though no user supervision is needed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Jingnan  |e verfasserin  |4 aut 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 11 vom: 02. Nov., Seite 2874-88  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:11  |g day:02  |g month:11  |g pages:2874-88 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2010.2052263  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 11  |b 02  |c 11  |h 2874-88