Bayesian blind deconvolution from differently exposed image pairs
Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing tw...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 11 vom: 02. Nov., Seite 2874-88 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing two such images in order to obtain an estimate of the original scene and present a novel blind deconvolution algorithm for solving it. We formulate the problem in a hierarchical Bayesian framework by utilizing prior knowledge on the unknown image and blur, and also on the dependency between the two observed images. By incorporating a fully Bayesian analysis, the developed algorithm estimates all necessary model parameters along with the unknown image and blur, such that no user-intervention is needed. Moreover, we employ a variational Bayesian inference procedure, which allows for the statistical compensation of errors occurring at different stages of the restoration, and also provides uncertainties of the estimates. Experimental results with synthetic and real images demonstrate that the proposed method provides very high quality restoration results and compares favorably to existing methods even though no user supervision is needed |
---|---|
Beschreibung: | Date Completed 11.09.2014 Date Revised 06.09.2013 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2010.2052263 |