Bayesian blind deconvolution from differently exposed image pairs

Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing tw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 11 vom: 02. Nov., Seite 2874-88
1. Verfasser: Babacan, Sevket Derin (VerfasserIn)
Weitere Verfasser: Wang, Jingnan, Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Photographs acquired under low-lighting conditions require long exposure times and therefore exhibit significant blurring due to the shaking of the camera. Using shorter exposure times results in sharper images but with a very high level of noise. In this paper we address the problem of utilizing two such images in order to obtain an estimate of the original scene and present a novel blind deconvolution algorithm for solving it. We formulate the problem in a hierarchical Bayesian framework by utilizing prior knowledge on the unknown image and blur, and also on the dependency between the two observed images. By incorporating a fully Bayesian analysis, the developed algorithm estimates all necessary model parameters along with the unknown image and blur, such that no user-intervention is needed. Moreover, we employ a variational Bayesian inference procedure, which allows for the statistical compensation of errors occurring at different stages of the restoration, and also provides uncertainties of the estimates. Experimental results with synthetic and real images demonstrate that the proposed method provides very high quality restoration results and compares favorably to existing methods even though no user supervision is needed
Beschreibung:Date Completed 11.09.2014
Date Revised 06.09.2013
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2010.2052263