Detecting the presence of denatured human serum albumin in an adsorbed protein monolayer using TOF-SIMS

We demonstrate the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with multivariate statistics to differentiate trace levels of denatured proteins in adsorbed monolayers; specifically, human serum albumin (HSA) on oxidized silicon substrates. Subtle differenc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 14 vom: 20. Juli, Seite 12075-80
1. Verfasser: Kempson, Ivan M (VerfasserIn)
Weitere Verfasser: Martin, Amanda L, Denman, John A, French, Peter W, Prestidge, Clive A, Barnes, Timothy J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Serum Albumin Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:We demonstrate the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with multivariate statistics to differentiate trace levels of denatured proteins in adsorbed monolayers; specifically, human serum albumin (HSA) on oxidized silicon substrates. Subtle differences in protein conformation due to thermal denaturation of HSA, unable to be determined by dynamic light scattering nor circular dichroism, were differentiated by TOF-SIMS. The fragmentation pattern is highly sensitive to protein conformation, allowing assessment of relative amounts of proteins in mixtures and quantifying amounts of denatured protein in a sample. Discussion is presented on ascribing orientation and conformational differences between samples based upon TOF-SIMS spectra. This has implications for detecting denatured protein in biotechnology and medical applications
Beschreibung:Date Completed 01.12.2010
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la101253g