Motion estimation for nonoverlapping multicamera rigs : linear algebraic and L{infinity} geometric solutions
We investigate the problem of estimating the ego-motion of a multicamera rig from two positions of the rig. We describe and compare two new algorithms for finding the 6 degrees of freedom (3 for rotation and 3 for translation) of the motion. One algorithm gives a linear solution and the other is a g...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 6 vom: 02. Juni, Seite 1044-59 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | We investigate the problem of estimating the ego-motion of a multicamera rig from two positions of the rig. We describe and compare two new algorithms for finding the 6 degrees of freedom (3 for rotation and 3 for translation) of the motion. One algorithm gives a linear solution and the other is a geometric algorithm that minimizes the maximum measurement error-the optimal L{infinity} solution. They are described in the context of the General Camera Model (GCM), and we pay particular attention to multicamera systems in which the cameras have nonoverlapping or minimally overlapping field of view. Many nonlinear algorithms have been developed to solve the multicamera motion estimation problem. However, no linear solution or guaranteed optimal geometric solution has previously been proposed. We made two contributions: 1) a fast linear algebraic method using the GCM and 2) a guaranteed globally optimal algorithm based on the L{infinity} geometric error using the branch-and-bound technique. In deriving the linear method using the GCM, we give a detailed analysis of degeneracy of camera configurations. In finding the globally optimal solution, we apply a rotation space search technique recently proposed by Hartley and Kahl. Our experiments conducted on both synthetic and real data have shown excellent results |
---|---|
Beschreibung: | Date Completed 20.07.2010 Date Revised 30.04.2010 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2009.82 |