Robust feature-preserving mesh denoising based on consistent subneighborhoods

In this paper, we introduce a feature-preserving denoising algorithm. It is built on the premise that the underlying surface of a noisy mesh is piecewise smooth, and a sharp feature lies on the intersection of multiple smooth surface regions. A vertex close to a sharp feature is likely to have a nei...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 16(2010), 2 vom: 15. März, Seite 312-24
1. Verfasser: Fan, Hanqi (VerfasserIn)
Weitere Verfasser: Yu, Yizhou, Peng, Qunsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM194366944
003 DE-627
005 20231223200605.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2009.70  |2 doi 
028 5 2 |a pubmed24n0648.xml 
035 |a (DE-627)NLM194366944 
035 |a (NLM)20075490 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Hanqi  |e verfasserin  |4 aut 
245 1 0 |a Robust feature-preserving mesh denoising based on consistent subneighborhoods 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.04.2010 
500 |a Date Revised 15.01.2010 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we introduce a feature-preserving denoising algorithm. It is built on the premise that the underlying surface of a noisy mesh is piecewise smooth, and a sharp feature lies on the intersection of multiple smooth surface regions. A vertex close to a sharp feature is likely to have a neighborhood that includes distinct smooth segments. By defining the consistent subneighborhood as the segment whose geometry and normal orientation most consistent with those of the vertex, we can completely remove the influence from neighbors lying on other segments during denoising. Our method identifies piecewise smooth subneighborhoods using a robust density-based clustering algorithm based on shared nearest neighbors. In our method, we obtain an initial estimate of vertex normals and curvature tensors by robustly fitting a local quadric model. An anisotropic filter based on optimal estimation theory is further applied to smooth the normal field and the curvature tensor field. This is followed by second-order bilateral filtering, which better preserves curvature details and alleviates volume shrinkage during denoising. The support of these filters is defined by the consistent subneighborhood of a vertex. We have applied this algorithm to both generic and CAD models, and sharp features, such as edges and corners, are very well preserved 
650 4 |a Journal Article 
700 1 |a Yu, Yizhou  |e verfasserin  |4 aut 
700 1 |a Peng, Qunsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 16(2010), 2 vom: 15. März, Seite 312-24  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:16  |g year:2010  |g number:2  |g day:15  |g month:03  |g pages:312-24 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2009.70  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 16  |j 2010  |e 2  |b 15  |c 03  |h 312-24