|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM194366731 |
003 |
DE-627 |
005 |
20250211050556.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2009.23
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0648.xml
|
035 |
|
|
|a (DE-627)NLM194366731
|
035 |
|
|
|a (NLM)20075471
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ozuysal, Mustafa
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fast keypoint recognition using random ferns
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.03.2010
|
500 |
|
|
|a Date Revised 15.01.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a While feature point recognition is a key component of modern approaches to object detection, existing approaches require computationally expensive patch preprocessing to handle perspective distortion. In this paper, we show that formulating the problem in a naive Bayesian classification framework makes such preprocessing unnecessary and produces an algorithm that is simple, efficient, and robust. Furthermore, it scales well as the number of classes grows. To recognize the patches surrounding keypoints, our classifier uses hundreds of simple binary features and models class posterior probabilities. We make the problem computationally tractable by assuming independence between arbitrary sets of features. Even though this is not strictly true, we demonstrate that our classifier nevertheless performs remarkably well on image data sets containing very significant perspective changes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Calonder, Michael
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lepetit, Vincent
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fua, Pascal
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1998
|g 32(2010), 3 vom: 15. März, Seite 448-61
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2010
|g number:3
|g day:15
|g month:03
|g pages:448-61
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2009.23
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2010
|e 3
|b 15
|c 03
|h 448-61
|