|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM194351408 |
003 |
DE-627 |
005 |
20231223200546.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2010 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la904768e
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0648.xml
|
035 |
|
|
|a (DE-627)NLM194351408
|
035 |
|
|
|a (NLM)20073498
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tahk, Dongha
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fabrication of antireflection and antifogging polymer sheet by partial photopolymerization and dry etching
|
264 |
|
1 |
|c 2010
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.04.2010
|
500 |
|
|
|a Date Revised 09.02.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We present a simple method to fabricate a polymer optical sheet with antireflection and antifogging properties. The method consists of two consecutive steps: photocross-linking of UV-curable polyurethane acrylate (PUA) resin and reactive ion etching (RIE). During photopolymerization, the cured PUA film is divided into two domains of randomly distributed macromers and oligomers due to a relatively short exposure time of 20 s at ambient conditions. Using the macromer domain as an etch-mask, dry etching was subsequently carried out to remove the oligomer domain, leaving behind a nanoturf surface with tunable roughness. UV-vis spectroscopy measurements demonstrate that transmittance of a nanoturf surface is enhanced up to 92.5% as compared to a flat PUA surface (89.5%). In addition, measurements of contact angle (CA) reveal that the etched surface shows superhydrophilicity with a CA as small as 5 degrees. To seek potential applications, I-V characteristics of a thin film organic solar cell were measured under various testing conditions. It is shown that the efficiency can be increased to 2.9% when a nanoturf film with the surface roughness of 34.73 nm is attached to indium tin oxide (ITO) glass. More importantly, the performance is maintained even in the presence of water owing to superhydrophilic nature of the film
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kim, Tae-il
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yoon, Hyunsik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Moonkee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shin, Kyusoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Suh, Kahp Y
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 26(2010), 4 vom: 16. Feb., Seite 2240-3
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2010
|g number:4
|g day:16
|g month:02
|g pages:2240-3
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la904768e
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2010
|e 4
|b 16
|c 02
|h 2240-3
|