Fabrication of antireflection and antifogging polymer sheet by partial photopolymerization and dry etching

We present a simple method to fabricate a polymer optical sheet with antireflection and antifogging properties. The method consists of two consecutive steps: photocross-linking of UV-curable polyurethane acrylate (PUA) resin and reactive ion etching (RIE). During photopolymerization, the cured PUA f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 26(2010), 4 vom: 16. Feb., Seite 2240-3
1. Verfasser: Tahk, Dongha (VerfasserIn)
Weitere Verfasser: Kim, Tae-il, Yoon, Hyunsik, Choi, Moonkee, Shin, Kyusoon, Suh, Kahp Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a simple method to fabricate a polymer optical sheet with antireflection and antifogging properties. The method consists of two consecutive steps: photocross-linking of UV-curable polyurethane acrylate (PUA) resin and reactive ion etching (RIE). During photopolymerization, the cured PUA film is divided into two domains of randomly distributed macromers and oligomers due to a relatively short exposure time of 20 s at ambient conditions. Using the macromer domain as an etch-mask, dry etching was subsequently carried out to remove the oligomer domain, leaving behind a nanoturf surface with tunable roughness. UV-vis spectroscopy measurements demonstrate that transmittance of a nanoturf surface is enhanced up to 92.5% as compared to a flat PUA surface (89.5%). In addition, measurements of contact angle (CA) reveal that the etched surface shows superhydrophilicity with a CA as small as 5 degrees. To seek potential applications, I-V characteristics of a thin film organic solar cell were measured under various testing conditions. It is shown that the efficiency can be increased to 2.9% when a nanoturf film with the surface roughness of 34.73 nm is attached to indium tin oxide (ITO) glass. More importantly, the performance is maintained even in the presence of water owing to superhydrophilic nature of the film
Beschreibung:Date Completed 26.04.2010
Date Revised 09.02.2010
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la904768e