A generalized Kernel Consensus-based robust estimator

In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel Density Estimator (MKDE). The ASKC fr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 1 vom: 08. Jan., Seite 178-84
1. Verfasser: Wang, Hanzi (VerfasserIn)
Weitere Verfasser: Mirota, Daniel, Hager, Gregory D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000caa a22002652c 4500
001 NLM192953710
003 DE-627
005 20250211004844.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2009.148  |2 doi 
028 5 2 |a pubmed25n0643.xml 
035 |a (DE-627)NLM192953710 
035 |a (NLM)19926908 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hanzi  |e verfasserin  |4 aut 
245 1 2 |a A generalized Kernel Consensus-based robust estimator 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.01.2010 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel Density Estimator (MKDE). The ASKC framework is grounded on and unifies these robust estimators using nonparametric kernel density estimation theory. In particular, we show that each of these methods is a special case of ASKC using a specific kernel. Like these methods, ASKC can tolerate more than 50 percent outliers, but it can also automatically estimate the scale of inliers. We apply ASKC to two important areas in computer vision, robust motion estimation and pose estimation, and show comparative results on both synthetic and real data 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Mirota, Daniel  |e verfasserin  |4 aut 
700 1 |a Hager, Gregory D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 32(2010), 1 vom: 08. Jan., Seite 178-84  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:32  |g year:2010  |g number:1  |g day:08  |g month:01  |g pages:178-84 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2009.148  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2010  |e 1  |b 08  |c 01  |h 178-84