A generalized Kernel Consensus-based robust estimator
In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel Density Estimator (MKDE). The ASKC fr...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 32(2010), 1 vom: 08. Jan., Seite 178-84 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural |
Zusammenfassung: | In this paper, we present a new Adaptive-Scale Kernel Consensus (ASKC) robust estimator as a generalization of the popular and state-of-the-art robust estimators such as RANdom SAmple Consensus (RANSAC), Adaptive Scale Sample Consensus (ASSC), and Maximum Kernel Density Estimator (MKDE). The ASKC framework is grounded on and unifies these robust estimators using nonparametric kernel density estimation theory. In particular, we show that each of these methods is a special case of ASKC using a specific kernel. Like these methods, ASKC can tolerate more than 50 percent outliers, but it can also automatically estimate the scale of inliers. We apply ASKC to two important areas in computer vision, robust motion estimation and pose estimation, and show comparative results on both synthetic and real data |
---|---|
Beschreibung: | Date Completed 25.01.2010 Date Revised 20.10.2021 published: Print Citation Status MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2009.148 |