Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association

We propose a framework for tracking multiple targets, where the input is a set of candidate regions in each frame, as obtained from a state-of-the-art background segmentation module, and the goal is to recover trajectories of targets over time. Due to occlusions by targets and static objects, as als...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 12 vom: 20. Dez., Seite 2196-210
1. Verfasser: Yu, Qian (VerfasserIn)
Weitere Verfasser: Medioni, Gérard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM192095455
003 DE-627
005 20231223192330.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.253  |2 doi 
028 5 2 |a pubmed24n0640.xml 
035 |a (DE-627)NLM192095455 
035 |a (NLM)19834141 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Qian  |e verfasserin  |4 aut 
245 1 0 |a Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.02.2010 
500 |a Date Revised 16.10.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a framework for tracking multiple targets, where the input is a set of candidate regions in each frame, as obtained from a state-of-the-art background segmentation module, and the goal is to recover trajectories of targets over time. Due to occlusions by targets and static objects, as also by noisy segmentation and false alarms, one foreground region may not correspond to one target faithfully. Therefore, the one-to-one assumption used in most data association algorithms is not always satisfied. Our method overcomes the one-to-one assumption by formulating the visual tracking problem in terms of finding the best spatial and temporal association of observations, which maximizes the consistency of both motion and appearance of trajectories. To avoid enumerating all possible solutions, we take a Data-Driven Markov Chain Monte Carlo (DD-MCMC) approach to sample the solution space efficiently. The sampling is driven by an informed proposal scheme controlled by a joint probability model combining motion and appearance. Comparative experiments with quantitative evaluations are provided 
650 4 |a Journal Article 
700 1 |a Medioni, Gérard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 12 vom: 20. Dez., Seite 2196-210  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:12  |g day:20  |g month:12  |g pages:2196-210 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.253  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 12  |b 20  |c 12  |h 2196-210