Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association

We propose a framework for tracking multiple targets, where the input is a set of candidate regions in each frame, as obtained from a state-of-the-art background segmentation module, and the goal is to recover trajectories of targets over time. Due to occlusions by targets and static objects, as als...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 12 vom: 20. Dez., Seite 2196-210
1. Verfasser: Yu, Qian (VerfasserIn)
Weitere Verfasser: Medioni, Gérard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We propose a framework for tracking multiple targets, where the input is a set of candidate regions in each frame, as obtained from a state-of-the-art background segmentation module, and the goal is to recover trajectories of targets over time. Due to occlusions by targets and static objects, as also by noisy segmentation and false alarms, one foreground region may not correspond to one target faithfully. Therefore, the one-to-one assumption used in most data association algorithms is not always satisfied. Our method overcomes the one-to-one assumption by formulating the visual tracking problem in terms of finding the best spatial and temporal association of observations, which maximizes the consistency of both motion and appearance of trajectories. To avoid enumerating all possible solutions, we take a Data-Driven Markov Chain Monte Carlo (DD-MCMC) approach to sample the solution space efficiently. The sampling is driven by an informed proposal scheme controlled by a joint probability model combining motion and appearance. Comparative experiments with quantitative evaluations are provided
Beschreibung:Date Completed 01.02.2010
Date Revised 16.10.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2008.253