Effective level set image segmentation with a kernel induced data term

This study investigates level set multiphase image segmentation by kernel mapping and piecewise constant modeling of the image data thereof. A kernel function maps implicitly the original data into data of a higher dimension so that the piecewise constant model becomes applicable. This leads to a fl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 1 vom: 01. Jan., Seite 220-32
1. Verfasser: Salah, Mohamed Ben (VerfasserIn)
Weitere Verfasser: Mitiche, Amar, Ayed, Ismail Ben
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2010
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM19156091X
003 DE-627
005 20250210195116.0
007 cr uuu---uuuuu
008 231223s2010 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2009.2032940  |2 doi 
028 5 2 |a pubmed25n0639.xml 
035 |a (DE-627)NLM19156091X 
035 |a (NLM)19775964 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Salah, Mohamed Ben  |e verfasserin  |4 aut 
245 1 0 |a Effective level set image segmentation with a kernel induced data term 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.02.2010 
500 |a Date Revised 16.12.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study investigates level set multiphase image segmentation by kernel mapping and piecewise constant modeling of the image data thereof. A kernel function maps implicitly the original data into data of a higher dimension so that the piecewise constant model becomes applicable. This leads to a flexible and effective alternative to complex modeling of the image data. The method uses an active curve objective functional with two terms: an original term which evaluates the deviation of the mapped image data within each segmentation region from the piecewise constant model and a classic length regularization term for smooth region boundaries. Functional minimization is carried out by iterations of two consecutive steps: 1) minimization with respect to the segmentation by curve evolution via Euler-Lagrange descent equations and 2) minimization with respect to the regions parameters via fixed point iterations. Using a common kernel function, this step amounts to a mean shift parameter update. We verified the effectiveness of the method by a quantitative and comparative performance evaluation over a large number of experiments on synthetic images, as well as experiments with a variety of real images such as medical, satellite, and natural images, as well as motion maps 
650 4 |a Journal Article 
700 1 |a Mitiche, Amar  |e verfasserin  |4 aut 
700 1 |a Ayed, Ismail Ben  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 19(2010), 1 vom: 01. Jan., Seite 220-32  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:19  |g year:2010  |g number:1  |g day:01  |g month:01  |g pages:220-32 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2009.2032940  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 19  |j 2010  |e 1  |b 01  |c 01  |h 220-32