Effective level set image segmentation with a kernel induced data term
This study investigates level set multiphase image segmentation by kernel mapping and piecewise constant modeling of the image data thereof. A kernel function maps implicitly the original data into data of a higher dimension so that the piecewise constant model becomes applicable. This leads to a fl...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 19(2010), 1 vom: 01. Jan., Seite 220-32 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2010
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | This study investigates level set multiphase image segmentation by kernel mapping and piecewise constant modeling of the image data thereof. A kernel function maps implicitly the original data into data of a higher dimension so that the piecewise constant model becomes applicable. This leads to a flexible and effective alternative to complex modeling of the image data. The method uses an active curve objective functional with two terms: an original term which evaluates the deviation of the mapped image data within each segmentation region from the piecewise constant model and a classic length regularization term for smooth region boundaries. Functional minimization is carried out by iterations of two consecutive steps: 1) minimization with respect to the segmentation by curve evolution via Euler-Lagrange descent equations and 2) minimization with respect to the regions parameters via fixed point iterations. Using a common kernel function, this step amounts to a mean shift parameter update. We verified the effectiveness of the method by a quantitative and comparative performance evaluation over a large number of experiments on synthetic images, as well as experiments with a variety of real images such as medical, satellite, and natural images, as well as motion maps |
---|---|
Beschreibung: | Date Completed 18.02.2010 Date Revised 16.12.2009 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2009.2032940 |