Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures

The local statistical properties of photographic images, when represented in a multi-scale basis, have been described using Gaussian scale mixtures. Here, we use this local description as a substrate for constructing a global field of Gaussian scale mixtures (FoGSMs). Specifically, we model multi-sc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 4 vom: 03. Apr., Seite 693-706
1. Verfasser: Lyu, Siwei (VerfasserIn)
Weitere Verfasser: Simoncelli, Eero P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM18654572X
003 DE-627
005 20240318231849.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.107  |2 doi 
028 5 2 |a pubmed24n1334.xml 
035 |a (DE-627)NLM18654572X 
035 |a (NLM)19229084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyu, Siwei  |e verfasserin  |4 aut 
245 1 0 |a Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2009 
500 |a Date Revised 18.03.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The local statistical properties of photographic images, when represented in a multi-scale basis, have been described using Gaussian scale mixtures. Here, we use this local description as a substrate for constructing a global field of Gaussian scale mixtures (FoGSMs). Specifically, we model multi-scale subbands as a product of an exponentiated homogeneous Gaussian Markov random field (hGMRF) and a second independent hGMRF. We show that parameter estimation for this model is feasible, and that samples drawn from a FoGSM model have marginal and joint statistics similar to subband coefficients of photographic images. We develop an algorithm for removing additive Gaussian white noise based on the FoGSM model, and demonstrate denoising performance comparable with state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Simoncelli, Eero P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 4 vom: 03. Apr., Seite 693-706  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:4  |g day:03  |g month:04  |g pages:693-706 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.107  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 4  |b 03  |c 04  |h 693-706