Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures
The local statistical properties of photographic images, when represented in a multi-scale basis, have been described using Gaussian scale mixtures. Here, we use this local description as a substrate for constructing a global field of Gaussian scale mixtures (FoGSMs). Specifically, we model multi-sc...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 4 vom: 03. Apr., Seite 693-706 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | The local statistical properties of photographic images, when represented in a multi-scale basis, have been described using Gaussian scale mixtures. Here, we use this local description as a substrate for constructing a global field of Gaussian scale mixtures (FoGSMs). Specifically, we model multi-scale subbands as a product of an exponentiated homogeneous Gaussian Markov random field (hGMRF) and a second independent hGMRF. We show that parameter estimation for this model is feasible, and that samples drawn from a FoGSM model have marginal and joint statistics similar to subband coefficients of photographic images. We develop an algorithm for removing additive Gaussian white noise based on the FoGSM model, and demonstrate denoising performance comparable with state-of-the-art methods |
---|---|
Beschreibung: | Date Completed 11.05.2009 Date Revised 18.03.2024 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2008.107 |