Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids

We introduce a nonlocal on-lattice version of density functional theory (DFT) that allows for efficient modeling of fluids in complex inhomogeneous materials. In its previous implementations, classical DFT has required fine discretization of the fluid density. As a result, in studies of gas adsorpti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 25(2009), 3 vom: 03. Feb., Seite 1296-9
1. Verfasser: Siderius, Daniel W (VerfasserIn)
Weitere Verfasser: Gelb, Lev D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM185561802
003 DE-627
005 20250210020608.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1021/la803666t  |2 doi 
028 5 2 |a pubmed25n0619.xml 
035 |a (DE-627)NLM185561802 
035 |a (NLM)19123796 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Siderius, Daniel W  |e verfasserin  |4 aut 
245 1 0 |a Predicting gas adsorption in complex microporous and mesoporous materials using a new density functional theory of finely discretized lattice fluids 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.03.2009 
500 |a Date Revised 27.01.2009 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce a nonlocal on-lattice version of density functional theory (DFT) that allows for efficient modeling of fluids in complex inhomogeneous materials. In its previous implementations, classical DFT has required fine discretization of the fluid density. As a result, in studies of gas adsorption it has been used only in idealized pore models with high symmetry. Our new lattice DFT dramatically reduces the computational demand required to model simple fluids and hence can be efficiently applied to complex materials with multiple directions of asymmetry. We apply our new lattice DFT to study nitrogen adsorption in a slit pore with open ends and directly obtain the correct desorption hysteresis. We also apply our DFT to predict hydrogen adsorption accurately in an atomistic model of a metal-organic framework 
650 4 |a Journal Article 
700 1 |a Gelb, Lev D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1991  |g 25(2009), 3 vom: 03. Feb., Seite 1296-9  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:25  |g year:2009  |g number:3  |g day:03  |g month:02  |g pages:1296-9 
856 4 0 |u http://dx.doi.org/10.1021/la803666t  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 25  |j 2009  |e 3  |b 03  |c 02  |h 1296-9