The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death
Previous results showed that expression of the gene encoding the LONG-CHAIN BASE2 (LCB(2)) subunit of serine palmitoyltransferase (SPT), designated BcLCB(2), from nonheading Chinese cabbage (Brassica campestris ssp. chinensis) was up-regulated during hypersensitive cell death (HCD) induced by the Ph...
Veröffentlicht in: | The New phytologist. - 1979. - 181(2009), 1 vom: 23., Seite 127-146 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Bacterial Outer Membrane Proteins Plant Proteins Protein Subunits harpin protein, Erwinia amylovora pathogenesis-related proteins, plant Serine C-Palmitoyltransferase EC 2.3.1.50 |
Zusammenfassung: | Previous results showed that expression of the gene encoding the LONG-CHAIN BASE2 (LCB(2)) subunit of serine palmitoyltransferase (SPT), designated BcLCB(2), from nonheading Chinese cabbage (Brassica campestris ssp. chinensis) was up-regulated during hypersensitive cell death (HCD) induced by the Phytophthora boehmeriae elicitor PB90. Overexpression of BcLCB(2) in Nicotiana tabacum leaves suppressed the HCD normally initiated by elicitors and PB90-triggered H(2)O(2) accumulation. BcLCB(2) also functioned as a suppressor of mouse Bcl-2 associated X (Bax) protein-mediated HCD and cell death caused by Ralstonia solanacearum. BcLCB(2) overexpression suppressed Bax- and oxidant stress-triggered yeast cell death. Reactive oxygen species (ROS) accumulation induced by Bax was compromised in BcLCB(2)-overexpressing yeast cells. The findings that NbLCB(2) silencing in Nicotiana benthamiana enhanced elicitor-triggered HCD, combined with the fact that myriocin, a potent inhibitor of SPT, had no effect on Bax-induced programmed cell death, suggested that suppression of cell death was not involved in the dominant-negative effect that resulted from BcLCB(2) overexpression. A BcLCB(2) mutant assay showed that the suppression was not involved in SPT activity. The results suggest that plant HCD and stress-induced yeast cell death might share a common signal transduction pathway involving LCB(2), and that LCB(2) protects against cell death by inhibiting ROS accumulation, this inhibition being independent of SPT activity |
---|---|
Beschreibung: | Date Completed 06.02.2009 Date Revised 13.12.2023 published: Print Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/j.1469-8137.2008.02642.x |