Oxylipin profile and antioxidant status of potato tubers during extended storage at room temperature

Potato tubers (cv. Bintje) (Solanum tuberosum L.) were stored under extreme conditions at 20 degrees C for 350 days without sprout inhibitors in order to assess whether aging- and/or senescence-related processes occurred. Under these extreme storage conditions, multiple sprouting followed by the for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 46(2008), 12 vom: 01. Dez., Seite 1077-84
1. Verfasser: Delaplace, Pierre (VerfasserIn)
Weitere Verfasser: Rojas-Beltran, Jorge, Frettinger, Patrick, du Jardin, Patrick, Fauconnier, Marie-Laure
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antioxidants Oxylipins Carotenoids 36-88-4 Electron Transport Complex IV EC 1.9.3.1 Ascorbic Acid PQ6CK8PD0R
Beschreibung
Zusammenfassung:Potato tubers (cv. Bintje) (Solanum tuberosum L.) were stored under extreme conditions at 20 degrees C for 350 days without sprout inhibitors in order to assess whether aging- and/or senescence-related processes occurred. Under these extreme storage conditions, multiple sprouting followed by the formation of daughter tubers occurs. At the same time, an increase in respiration intensity, as evidenced by cytochrome c oxidase activity (E.C. 1.9.3.1), is observed, leading to a potential increase in reactive oxygen species (ROS) production. As polyunsaturated fatty acids are priority targets of oxidative attacks, the damage to lipids was assessed by oxylipin profiling in both free and esterified forms. Oxylipin profiling showed a predominance of linoleic acid-derived oxylipins and of 9-hydroxy and 9-hydroperoxy fatty acids in both free and esterified forms. No significant accumulation of individual oxylipin was observed 350 days after harvest. To further understand the absence of lipid breakdown products accumulation, the main enzymatic and non-enzymatic antioxidants were assessed. Antioxidant enzyme activities [superoxide dismutase (E.C. 1.15.1.1), catalase (E.C. 1.11.1.6.), ascorbate peroxidase (E.C. 1.11.1.11)] were enhanced during the advanced phase of aging. The main non-enzymatic antioxidant compound, ascorbate, decreased markedly in the early stages of storage, followed by a slower decline. Total radical scavenging activity was also maintained at the end of the storage period. Our results indicate that the enhanced aging process occurring during storage at room temperature does not seem to be associated with the changes classically encountered during leaf senescence or seed aging and that the observed degenerative processes do not surpass the protective potential of the tubers
Beschreibung:Date Completed 19.02.2009
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2008.09.001