Photochemical modification and patterning of SU-8 using anthraquinone photolinkers
Bioactive protein patterns and microarrays achieved by selective localization of biomolecules find various applications in biosensors, bio-microelectromechanical systems (bio-MEMS), and in basic protein studies. In this paper we describe simple photochemical methods to fabricate two-dimensional patt...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 18 vom: 16. Sept., Seite 9929-32 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Anthraquinones Coloring Agents Cross-Linking Reagents Epoxy Compounds Polymers Proteins SU-8 compound |
Zusammenfassung: | Bioactive protein patterns and microarrays achieved by selective localization of biomolecules find various applications in biosensors, bio-microelectromechanical systems (bio-MEMS), and in basic protein studies. In this paper we describe simple photochemical methods to fabricate two-dimensional patterns on a Novolac A derivative polymer (SU-8) and, subsequently, their functionalization with biomolecules. Anthraquinone (AQ) derivatives are used to chemically modify and pattern SU-8 surfaces. Features as small as 20 mum are obtained when using uncollimated light. The X-Y spatial resolution of micropatterned AQ molecules is improved to 1.5 mum when a collimated light source is used. This micropatterning process will be important for the functionalization of MEMS-based biosensors. The method saves several processing steps and can be integrated in cleanroom fabrication thus avoiding contamination of the sensor surfaces |
---|---|
Beschreibung: | Date Completed 17.10.2008 Date Revised 09.09.2008 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la800948w |