Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces
In this work, we investigate protein adsorption from single protein solutions and complex media such as 100% blood serum and plasma onto poly(sulfobetaine methacrylate) (polySBMA)-grafted surfaces via atom transfer radical polymerization (ATRP) at varying film thicknesses. It is interesting to obser...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 17 vom: 02. Sept., Seite 9211-4 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Ions Polymers Proteins Betaine 3SCV180C9W sulfobetaine 8CVU22OCJW mehr... |
Zusammenfassung: | In this work, we investigate protein adsorption from single protein solutions and complex media such as 100% blood serum and plasma onto poly(sulfobetaine methacrylate) (polySBMA)-grafted surfaces via atom transfer radical polymerization (ATRP) at varying film thicknesses. It is interesting to observe that protein adsorption exhibits a minimum at a medium film thickness. Results show that the surface with 62 nm polySBMA brushes presents the best nonfouling character in 100% blood serum and plasma although all of these surfaces are highly resistant to nonspecific protein adsorption from single fibrinogen and lysozyme solutions. Surface resistance to 100% blood serum or plasma is necessary for many applications from blood-contacting devices to drug delivery. This work provides a new in vitro evaluation standard for the application of biomaterials in vivo |
---|---|
Beschreibung: | Date Completed 13.11.2008 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la801487f |