Metallization of a thiol-terminated organic surface using chemical vapor deposition
The deposition and the subsequent decomposition of an organometallic precursor, (eta (3)-allyl)(eta (5)-cyclopentadienyl)palladium [Cp(allyl)Pd], on an organic surface exposed by self-assembled monolayers (SAM) was studied using X-ray photoelectron spectroscopy (XPS) and infrared reflection absorpti...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 24(2008), 15 vom: 05. Aug., Seite 7986-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The deposition and the subsequent decomposition of an organometallic precursor, (eta (3)-allyl)(eta (5)-cyclopentadienyl)palladium [Cp(allyl)Pd], on an organic surface exposed by self-assembled monolayers (SAM) was studied using X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS). The interfacial chemical reactions of the vapor-deposited metal precursor with the pendant thiol group of the SAMs made from oligophenyldithiols, which are either prepared directly (terphenyldimethyldithiol, TPDMT) or by a deprotection route from SAMs formed by a monoacylated derivative of biphenyldimethyldithiol (dep. BPDMAc-1) have been studied in detail. When the TPDMT-SAMs were exposed to Cp(allyl)Pd vapor, a Pd (2+)/allyl-terminated SAM surface was obtained (to a lower extent this was also the case for dep. BPDMAc-1 SAMs), which was stable against exposure to H 2 gas. Reduction to Pd (0) by H 2 was only observed when small amounts of Pd (0) were already present, for example, after prolonged exposure to the precursor. The catalytic activity of the small Pd (0) particles also caused a decomposition of the SAMs upon exposure to air |
---|---|
Beschreibung: | Date Completed 08.09.2008 Date Revised 30.07.2008 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la8008927 |