Directing the polar organization of microtubules
Microtubules (MTs) are polar protein filaments that participate in critical biological functions ranging from motor protein direction to coordination of chromosome separation during cell division. The effective facilitation of these processes, however, requires careful regulation of the polar orient...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 24(2008), 14 vom: 15. Juli, Seite 7039-43 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | Microtubules (MTs) are polar protein filaments that participate in critical biological functions ranging from motor protein direction to coordination of chromosome separation during cell division. The effective facilitation of these processes, however, requires careful regulation of the polar orientation and spatial organization of the assembled MTs. We describe here an artificial approach to polar MT assembly that enables us to create three-dimensional polar-oriented synthetic microtubule organizing centers (POSMOCs). Utilizing engineered MT polymerization in concert with functionalized micro- and nanoscale particles, we demonstrate the controllable polar assembly of MTs into asters and the variations in aster structure determined by the interactions between the MTs and the functionalized organizing particles. Inspired by the aster-like form of biological structures such as centrosomes, these POSMOCs represent a key step toward replicating biology's complex materials assembly machinery |
---|---|
Beschreibung: | Date Completed 15.08.2008 Date Revised 09.07.2008 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la800500c |