A comparative study of energy minimization methods for Markov random fields with smoothness-based priors

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 6 vom: 20. Juni, Seite 1068-80
Auteur principal: Szeliski, Richard (Auteur)
Autres auteurs: Zabih, Ramin, Scharstein, Daniel, Veksler, Olga, Kolmogorov, Vladimir, Agarwala, Aseem, Tappen, Marshall, Rother, Carsten
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Comparative Study Evaluation Study Journal Article