A comparative study of energy minimization methods for Markov random fields with smoothness-based priors

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 6 vom: 20. Juni, Seite 1068-80
1. Verfasser: Szeliski, Richard (VerfasserIn)
Weitere Verfasser: Zabih, Ramin, Scharstein, Daniel, Veksler, Olga, Kolmogorov, Vladimir, Agarwala, Aseem, Tappen, Marshall, Rother, Carsten
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article