A comparative study of energy minimization methods for Markov random fields with smoothness-based priors

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 6 vom: 20. Juni, Seite 1068-80
1. Verfasser: Szeliski, Richard (VerfasserIn)
Weitere Verfasser: Zabih, Ramin, Scharstein, Daniel, Veksler, Olga, Kolmogorov, Vladimir, Agarwala, Aseem, Tappen, Marshall, Rother, Carsten
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM17901062X
003 DE-627
005 20231223153046.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70844  |2 doi 
028 5 2 |a pubmed24n0597.xml 
035 |a (DE-627)NLM17901062X 
035 |a (NLM)18421111 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Szeliski, Richard  |e verfasserin  |4 aut 
245 1 2 |a A comparative study of energy minimization methods for Markov random fields with smoothness-based priors 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.06.2008 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. However, the tradeoffs among different energy minimization algorithms are still not well understood. In this paper we describe a set of energy minimization benchmarks and use them to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods graph cuts, LBP, and tree-reweighted message passing in addition to the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. Benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/ 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Zabih, Ramin  |e verfasserin  |4 aut 
700 1 |a Scharstein, Daniel  |e verfasserin  |4 aut 
700 1 |a Veksler, Olga  |e verfasserin  |4 aut 
700 1 |a Kolmogorov, Vladimir  |e verfasserin  |4 aut 
700 1 |a Agarwala, Aseem  |e verfasserin  |4 aut 
700 1 |a Tappen, Marshall  |e verfasserin  |4 aut 
700 1 |a Rother, Carsten  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 6 vom: 20. Juni, Seite 1068-80  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:6  |g day:20  |g month:06  |g pages:1068-80 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70844  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 6  |b 20  |c 06  |h 1068-80