Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation

The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 1(1992), 3 vom: 15., Seite 322-36
1. Verfasser: Galatsanos, N P (VerfasserIn)
Weitere Verfasser: Katsaggelos, A K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1992
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177822600
003 DE-627
005 20250209062458.0
007 tu
008 231223s1992 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177822600 
035 |a (NLM)18296166 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Galatsanos, N P  |e verfasserin  |4 aut 
245 1 0 |a Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation 
264 1 |c 1992 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 25.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing the regularization parameter and estimating the noise variance in image restoration is examined. An error analysis based on an objective mean-square-error (MSE) criterion is used to motivate regularization. Two approaches for choosing the regularization parameter and estimating the noise variance are proposed. The proposed and existing methods are compared and their relationship to linear minimum-mean-square-error filtering is examined. Experiments are presented that verify the theoretical results 
650 4 |a Journal Article 
700 1 |a Katsaggelos, A K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 1(1992), 3 vom: 15., Seite 322-36  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:1  |g year:1992  |g number:3  |g day:15  |g pages:322-36 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 1  |j 1992  |e 3  |b 15  |h 322-36