Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation

The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 1(1992), 3 vom: 15., Seite 322-36
1. Verfasser: Galatsanos, N P (VerfasserIn)
Weitere Verfasser: Katsaggelos, A K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1992
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing the regularization parameter and estimating the noise variance in image restoration is examined. An error analysis based on an objective mean-square-error (MSE) criterion is used to motivate regularization. Two approaches for choosing the regularization parameter and estimating the noise variance are proposed. The proposed and existing methods are compared and their relationship to linear minimum-mean-square-error filtering is examined. Experiments are presented that verify the theoretical results
Beschreibung:Date Completed 02.10.2012
Date Revised 25.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149