Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation
The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing t...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 1(1992), 3 vom: 15., Seite 322-36 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
1992
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing the regularization parameter and estimating the noise variance in image restoration is examined. An error analysis based on an objective mean-square-error (MSE) criterion is used to motivate regularization. Two approaches for choosing the regularization parameter and estimating the noise variance are proposed. The proposed and existing methods are compared and their relationship to linear minimum-mean-square-error filtering is examined. Experiments are presented that verify the theoretical results |
---|---|
Beschreibung: | Date Completed 02.10.2012 Date Revised 25.02.2008 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1057-7149 |