Globally convergent algorithms for maximum a posteriori transmission tomography

This paper reviews and compares three maximum likelihood algorithms for transmission tomography. One of these algorithms is the EM algorithm, one is based on a convexity argument devised by De Pierro (see IEEE Trans. Med. Imaging, vol.12, p.328-333, 1993) in the context of emission tomography, and o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 10 vom: 15., Seite 1430-8
1. Verfasser: Lange, K (VerfasserIn)
Weitere Verfasser: Fessler, J A
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177782404
003 DE-627
005 20250209061715.0
007 tu
008 231223s1995 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177782404 
035 |a (NLM)18291974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lange, K  |e verfasserin  |4 aut 
245 1 0 |a Globally convergent algorithms for maximum a posteriori transmission tomography 
264 1 |c 1995 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 22.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper reviews and compares three maximum likelihood algorithms for transmission tomography. One of these algorithms is the EM algorithm, one is based on a convexity argument devised by De Pierro (see IEEE Trans. Med. Imaging, vol.12, p.328-333, 1993) in the context of emission tomography, and one is an ad hoc gradient algorithm. The algorithms enjoy desirable local and global convergence properties and combine gracefully with Bayesian smoothing priors. Preliminary numerical testing of the algorithms on simulated data suggest that the convex algorithm and the ad hoc gradient algorithm are computationally superior to the EM algorithm. This superiority stems from the larger number of exponentiations required by the EM algorithm. The convex and gradient algorithms are well adapted to parallel computing 
650 4 |a Journal Article 
700 1 |a Fessler, J A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 4(1995), 10 vom: 15., Seite 1430-8  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:4  |g year:1995  |g number:10  |g day:15  |g pages:1430-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 4  |j 1995  |e 10  |b 15  |h 1430-8