Globally convergent algorithms for maximum a posteriori transmission tomography

This paper reviews and compares three maximum likelihood algorithms for transmission tomography. One of these algorithms is the EM algorithm, one is based on a convexity argument devised by De Pierro (see IEEE Trans. Med. Imaging, vol.12, p.328-333, 1993) in the context of emission tomography, and o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 10 vom: 15., Seite 1430-8
1. Verfasser: Lange, K (VerfasserIn)
Weitere Verfasser: Fessler, J A
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper reviews and compares three maximum likelihood algorithms for transmission tomography. One of these algorithms is the EM algorithm, one is based on a convexity argument devised by De Pierro (see IEEE Trans. Med. Imaging, vol.12, p.328-333, 1993) in the context of emission tomography, and one is an ad hoc gradient algorithm. The algorithms enjoy desirable local and global convergence properties and combine gracefully with Bayesian smoothing priors. Preliminary numerical testing of the algorithms on simulated data suggest that the convex algorithm and the ad hoc gradient algorithm are computationally superior to the EM algorithm. This superiority stems from the larger number of exponentiations required by the EM algorithm. The convex and gradient algorithms are well adapted to parallel computing
Beschreibung:Date Completed 02.10.2012
Date Revised 22.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149