Bispectral analysis and model validation of texture images

Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 7 vom: 15., Seite 996-1009
1. Verfasser: Hall, T E (VerfasserIn)
Weitere Verfasser: Giannakis, G B
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM177764139
003 DE-627
005 20250209061418.0
007 tu
008 231223s1995 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177764139 
035 |a (NLM)18290049 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hall, T E  |e verfasserin  |4 aut 
245 1 0 |a Bispectral analysis and model validation of texture images 
264 1 |c 1995 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 21.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In this paper, higher than second-order statistics are used to derive and implement 2-D Gaussianity, linearity, and spatial reversibility tests that validate the respective modeling assumptions. The nonredundant region of the 2-D bispectrum is correctly defined and proven. A consistent parameter estimator for nonminimum phase, asymmetric noncausal, 2-D ARMA models is derived by minimizing a quadratic error polyspectrum matching criterion. Simulations on synthetic data are performed and the results of the bispectral analysis on real textures are reported 
650 4 |a Journal Article 
700 1 |a Giannakis, G B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 4(1995), 7 vom: 15., Seite 996-1009  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:4  |g year:1995  |g number:7  |g day:15  |g pages:996-1009 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 4  |j 1995  |e 7  |b 15  |h 996-1009