Bispectral analysis and model validation of texture images

Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 7 vom: 15., Seite 996-1009
1. Verfasser: Hall, T E (VerfasserIn)
Weitere Verfasser: Giannakis, G B
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Statistical approaches to texture analysis and synthesis have largely relied upon random models that characterize the 2-D process in terms of its first- and second-order statistics, and therefore cannot completely capture phase properties of random fields that are non-Gaussian and/or asymmetric. In this paper, higher than second-order statistics are used to derive and implement 2-D Gaussianity, linearity, and spatial reversibility tests that validate the respective modeling assumptions. The nonredundant region of the 2-D bispectrum is correctly defined and proven. A consistent parameter estimator for nonminimum phase, asymmetric noncausal, 2-D ARMA models is derived by minimizing a quadratic error polyspectrum matching criterion. Simulations on synthetic data are performed and the results of the bispectral analysis on real textures are reported
Beschreibung:Date Completed 02.10.2012
Date Revised 21.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042