|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM177763345 |
003 |
DE-627 |
005 |
20250209061412.0 |
007 |
tu |
008 |
231223s1995 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0593.xml
|
035 |
|
|
|a (DE-627)NLM177763345
|
035 |
|
|
|a (NLM)18289970
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Birney, K A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a On the modeling of DCT and subband image data for compression
|
264 |
|
1 |
|c 1995
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 21.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Image subband and discrete cosine transform coefficients are modeled for efficient quantization and noiseless coding. Quantizers and codes are selected based on Laplacian, fixed generalized Gaussian, and adaptive generalized Gaussian models. The quantizers and codes based on the adaptive generalized Gaussian models are always superior in mean-squared error distortion performance but, generally, by no more than 0.08 bit/pixel, compared with the much simpler Laplacian model-based quantizers and noiseless codes. This provides strong motivation for the selection of pyramid codes for transform and subband image coding
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Fischer, T R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 4(1995), 2 vom: 15., Seite 186-93
|w (DE-627)NLM09821456X
|x 1057-7149
|7 nnns
|
773 |
1 |
8 |
|g volume:4
|g year:1995
|g number:2
|g day:15
|g pages:186-93
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 4
|j 1995
|e 2
|b 15
|h 186-93
|