On the modeling of DCT and subband image data for compression

Image subband and discrete cosine transform coefficients are modeled for efficient quantization and noiseless coding. Quantizers and codes are selected based on Laplacian, fixed generalized Gaussian, and adaptive generalized Gaussian models. The quantizers and codes based on the adaptive generalized...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 2 vom: 15., Seite 186-93
1. Verfasser: Birney, K A (VerfasserIn)
Weitere Verfasser: Fischer, T R
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Image subband and discrete cosine transform coefficients are modeled for efficient quantization and noiseless coding. Quantizers and codes are selected based on Laplacian, fixed generalized Gaussian, and adaptive generalized Gaussian models. The quantizers and codes based on the adaptive generalized Gaussian models are always superior in mean-squared error distortion performance but, generally, by no more than 0.08 bit/pixel, compared with the much simpler Laplacian model-based quantizers and noiseless codes. This provides strong motivation for the selection of pyramid codes for transform and subband image coding
Beschreibung:Date Completed 02.10.2012
Date Revised 21.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149