Methods for reconstruction of 2-D sequences from Fourier transform magnitude

The Gerchberg-Saxton (GS) algorithm and its generalizations have been the main tools for phase retrieval. Unfortunately, it has been observed that the reconstruction using these algorithms does not always converge to the correct result even if the desired solution satisfies the uniqueness condition....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 2 vom: 30., Seite 222-33
1. Verfasser: Zou, M Y (VerfasserIn)
Weitere Verfasser: Unbehauen, R
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17763152X
003 DE-627
005 20250209055225.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17763152X 
035 |a (NLM)18276204 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zou, M Y  |e verfasserin  |4 aut 
245 1 0 |a Methods for reconstruction of 2-D sequences from Fourier transform magnitude 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 15.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Gerchberg-Saxton (GS) algorithm and its generalizations have been the main tools for phase retrieval. Unfortunately, it has been observed that the reconstruction using these algorithms does not always converge to the correct result even if the desired solution satisfies the uniqueness condition. In this paper, we propose a new deautocorrelation algorithm and a few auxiliary techniques. We recommend that a combination of the iterative Fourier transform (IFT) algorithm with our new algorithm and techniques can improve the probability of success of phase retrieval. A pragmatic procedure is illustrated. Different reconstruction examples that are difficult to reconstructed using the single IFT algorithm are used to show the robustness and effectiveness of the new combination of algorithms. If the given Fourier modulus data contain no noise, it is sometimes possible to get a perfect reconstruction. Even when the signal-to-noise ratio (SNR) of the Fourier modulus data is only 10 dB, a meaningful result remains reachable for our examples. A concept concerning the intrinsic ambiguity of phase retrieval is suggested. We emphasize the necessity of verification of the solution, since the available phase retrieval algorithms are incompetent for distinguishing between an intrinsically ambiguous solution and the true solution 
650 4 |a Journal Article 
700 1 |a Unbehauen, R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 6(1997), 2 vom: 30., Seite 222-33  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:6  |g year:1997  |g number:2  |g day:30  |g pages:222-33 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 6  |j 1997  |e 2  |b 30  |h 222-33