Methods for reconstruction of 2-D sequences from Fourier transform magnitude

The Gerchberg-Saxton (GS) algorithm and its generalizations have been the main tools for phase retrieval. Unfortunately, it has been observed that the reconstruction using these algorithms does not always converge to the correct result even if the desired solution satisfies the uniqueness condition....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 2 vom: 30., Seite 222-33
1. Verfasser: Zou, M Y (VerfasserIn)
Weitere Verfasser: Unbehauen, R
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The Gerchberg-Saxton (GS) algorithm and its generalizations have been the main tools for phase retrieval. Unfortunately, it has been observed that the reconstruction using these algorithms does not always converge to the correct result even if the desired solution satisfies the uniqueness condition. In this paper, we propose a new deautocorrelation algorithm and a few auxiliary techniques. We recommend that a combination of the iterative Fourier transform (IFT) algorithm with our new algorithm and techniques can improve the probability of success of phase retrieval. A pragmatic procedure is illustrated. Different reconstruction examples that are difficult to reconstructed using the single IFT algorithm are used to show the robustness and effectiveness of the new combination of algorithms. If the given Fourier modulus data contain no noise, it is sometimes possible to get a perfect reconstruction. Even when the signal-to-noise ratio (SNR) of the Fourier modulus data is only 10 dB, a meaningful result remains reachable for our examples. A concept concerning the intrinsic ambiguity of phase retrieval is suggested. We emphasize the necessity of verification of the solution, since the available phase retrieval algorithms are incompetent for distinguishing between an intrinsically ambiguous solution and the true solution
Beschreibung:Date Completed 02.10.2012
Date Revised 15.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149