Parameter estimation in TV image restoration using variational distribution approximation

In this paper, we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper parameters for the image prior and the n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 3 vom: 14. März, Seite 326-39
1. Verfasser: Babacan, S Derin (VerfasserIn)
Weitere Verfasser: Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM177573287
003 DE-627
005 20231223150510.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2007.916051  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177573287 
035 |a (NLM)18270122 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Babacan, S Derin  |e verfasserin  |4 aut 
245 1 0 |a Parameter estimation in TV image restoration using variational distribution approximation 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2008 
500 |a Date Revised 13.02.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper parameters for the image prior and the noise are simultaneously estimated. The proposed algorithms provide approximations to the posterior distributions of the latent variables using variational methods. We show that some of the current approaches to TV-based image restoration are special cases of our framework. Experimental results show that the proposed approaches provide competitive performance without any assumptions about unknown hyper parameters and clearly outperform existing methods when additional information is included 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Molina, Rafael  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 3 vom: 14. März, Seite 326-39  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:3  |g day:14  |g month:03  |g pages:326-39 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2007.916051  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 3  |b 14  |c 03  |h 326-39