Parameter estimation in TV image restoration using variational distribution approximation

In this paper, we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper parameters for the image prior and the n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 3 vom: 14. März, Seite 326-39
1. Verfasser: Babacan, S Derin (VerfasserIn)
Weitere Verfasser: Molina, Rafael, Katsaggelos, Aggelos K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. Within the hierarchical Bayesian formulation, the reconstructed image and the unknown hyper parameters for the image prior and the noise are simultaneously estimated. The proposed algorithms provide approximations to the posterior distributions of the latent variables using variational methods. We show that some of the current approaches to TV-based image restoration are special cases of our framework. Experimental results show that the proposed approaches provide competitive performance without any assumptions about unknown hyper parameters and clearly outperform existing methods when additional information is included
Beschreibung:Date Completed 28.03.2008
Date Revised 13.02.2008
published: Print
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2007.916051