Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh

Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 6 vom: 28., Seite 863-7
1. Verfasser: Park, M (VerfasserIn)
Weitere Verfasser: Miller, D J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter
LEADER 01000naa a22002652 4500
001 NLM17754841X
003 DE-627
005 20231223150440.0
007 cr uuu---uuuuu
008 231223s1999 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.766862  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM17754841X 
035 |a (NLM)18267498 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, M  |e verfasserin  |4 aut 
245 1 0 |a Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.06.2010 
500 |a Date Revised 12.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden states. We generalize this HMM-based (1-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRFs base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques 
650 4 |a Letter 
700 1 |a Miller, D J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 8(1999), 6 vom: 28., Seite 863-7  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:8  |g year:1999  |g number:6  |g day:28  |g pages:863-7 
856 4 0 |u http://dx.doi.org/10.1109/83.766862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 1999  |e 6  |b 28  |h 863-7